Answer:
Option C
Explanation:
We have
$\frac{x}{\sqrt{1+x}}+\frac{y}{\sqrt{1+y}}=0$
$\Rightarrow$ $ x\sqrt{1+y}+y\sqrt{1+x}=0$
$\Rightarrow $ $x\sqrt{1+y}=-y\sqrt{1+x}=0$
$\Rightarrow $ $x^{2}(1+y)=y^{2}(1+x)$
$\Rightarrow $ $x^{2}+x^{2}y-y^{2}-xy^{2}=0$
$\Rightarrow$ $ (x+y)(x-y)+xy(x-y)=0$
$\Rightarrow$ $ (x-y)(x+y+xy)=0$
$\Rightarrow$ $ y(1+x)=-x$ $ [\because x-y\neq0]$
$\Rightarrow$ y= $ \frac{-x}{1+x}$
$\Rightarrow$ $\frac{dy}{dx}=-\left[\frac{(1+x)(1)-(x)}{(1+x)^{2}}\right]$
$\Rightarrow$ $(1+x)^{2}\frac{dy}{dx}=-1$